论文标题

基于模拟器的自动编码器,用于焦距波前传感

A simulator-based autoencoder for focal plane wavefront sensing

论文作者

Quesnel, Maxime, de Xivry, Gilles Orban, Absil, Olivier, Louppe, Gilles

论文摘要

仪器的畸变强烈限制了外部球星的高对比度成像,尤其是在科学图像中产生过绝对的斑点时。在深度学习的最新进展的帮助下,我们在以前的作品中开发了一种应用卷积神经网络(CNN)来估计从点扩散功能(PSF)估算瞳孔平面相差的方法。在这项工作中,我们通过将其纳入深度学习架构中,进一步迈出了一步,对乐器内部发生的光学传播的物理模拟。这是通过自动编码器体系结构实现的,该体系结构使用可区分的光学模拟器作为解码器。因为这种无监督的学习方法重建了PSF,因此知道不需要训练模型的真实阶段,这使其对天空应用程序特别有希望。我们表明,我们方法的性能几乎与标准CNN方法相同,并且模型在训练和鲁棒性方面足够稳定。我们显着说明了如何通过快速在单个测试图像上微调模型,从而在PSF含有更多的噪声和畸变时,可以从基于模拟器的自动编码器体系结构中受益。这些早期结果非常有前途,并且已经确定了将来的步骤以将方法应用于真实数据上。

Instrumental aberrations strongly limit high-contrast imaging of exoplanets, especially when they produce quasistatic speckles in the science images. With the help of recent advances in deep learning, we have developed in previous works an approach that applies convolutional neural networks (CNN) to estimate pupil-plane phase aberrations from point spread functions (PSF). In this work we take a step further by incorporating into the deep learning architecture the physical simulation of the optical propagation occurring inside the instrument. This is achieved with an autoencoder architecture, which uses a differentiable optical simulator as the decoder. Because this unsupervised learning approach reconstructs the PSFs, knowing the true phase is not needed to train the models, making it particularly promising for on-sky applications. We show that the performance of our method is almost identical to a standard CNN approach, and that the models are sufficiently stable in terms of training and robustness. We notably illustrate how we can benefit from the simulator-based autoencoder architecture by quickly fine-tuning the models on a single test image, achieving much better performance when the PSFs contain more noise and aberrations. These early results are very promising and future steps have been identified to apply the method on real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源