论文标题
简单渐近性超平面和边界功能奇异性的单次功能的空隙和量的影响
Lacunas and ramification of volume functions at simple asymptotic hyperplanes and monodromy of boundary function singularities
论文作者
论文摘要
由欧几里得空间中的域定义的音量函数$ \ mathbb {r}^n $是仿射超平面空间的函数,等于这些超平面从域从域切割的体积等于体积。这些功能的研究源自阿基米德和牛顿的作品,与双曲部分偏微分方程的间隙理论密切相关。相对于切割域的边界,体积功能在一般位置的超平面上是规则的。我们研究它们在非规范的超平面上的行为,它们要么在有限点处与域的边界相切,要么具有渐近方向。在这两种情况下,限制体积函数对一组常规平面的局部连接组件的局部规律性取决于某个相对同源类别的琐碎性,即(概括)甚至彼得罗夫斯基类。在第一种情况下(有限的切线),对这些类别的研究以及对波阵线简单奇异性的规律性组成部分(所谓的局部空隙)的枚举基本上是由V. A. A. Vassiliev进行的;它是根据简单的真实函数奇异性的变形而配制的。我们表明,渐近超平面的类似研究与边界功能奇点的研究相同。我们为这种情况定义和计算本地彼得罗夫斯基类,并找到空隙,即相应判别的补充的局部组成部分,其中所有局部的彼得罗夫斯基类都是微不足道的。如果组件不是lacuna,我们会证明相应的体积函数不能是代数。另外,我们还计算了局部单型组,描述了体积功能的影响。
The volume function defined by a domain in Euclidean space $\mathbb{R}^n$ is the function on the space of affine hyperplanes equal to volumes cut by these hyperplanes from the domain. The study of these functions originates from the works of Archimedes and Newton and is closely related to the theory of lacunas of hyperbolic partial differential equations.The volume functions are regular at the hyperplanes of general position with respect to the boundary of the cut domain. We study their behavior at the non-regular hyperplanes, which are either tangent to the boundary of the domain at its finite points or have asymptotic direction. In both cases the local regularity of the restriction of the volume function to a local connected component of the set of regular planes depends on the triviality of a certain relative homology class, the (generalized) even Petrovsky class. In the first case (of finite tangencies) the study of these classes and enumeration of components of regularity (so called local lacunas) at simple singularities of wave fronts was essentially done by V. A. Vassiliev; it is formulated in terms of deformations of simple real function singularities. We show that the analogous study for asymptotic hyperplanes is related in the same way with the study of boundary function singularities. We define and calculate local Petrovsky classes for this case and find lacunas, i.e. the local components of the complement of corresponding discriminant in which all local Petrovsky classes are trivial. If component is not lacuna we prove that the corresponding volume function cannot be algebraic. Also we calculate the local monodromy groups, describing the ramification of volume functions.