论文标题

大规模自学学习的语音分离

Speech separation with large-scale self-supervised learning

论文作者

Chen, Zhuo, Kanda, Naoyuki, Wu, Jian, Wu, Yu, Wang, Xiaofei, Yoshioka, Takuya, Li, Jinyu, Sivasankaran, Sunit, Eskimez, Sefik Emre

论文摘要

诸如WAVLM之类的自我监督学习(SSL)方法已显示出令人鼓舞的语音分离(SS)导致基于小规模的模拟实验。在这项工作中,我们通过大量扩大预训练数据(超过30万小时)和微调数据(10k小时)来扩展基于SSL的SS的探索。我们还研究了各种技术,以在有限的计算预算下有效地将预训练的模型与SS网络整合在一起,包括仅使用预先训练模型的部分的低帧速率SSL模型训练设置和微调方案。与使用先前释放的94K小时训练的WAVLM获得的特征嵌入的监督基线和基于WAVLM的SS模型相比,我们提出的模型分别获得了相对单词错误率(WER)降低的15.9%和11.2%,用于模拟的外观式语音混合测试集。对于使用持续语音分离的真实会议记录上的对话转录,提议的模型分别在AMI和ICSI评估集的纯粹监督基线的相对降低的相对减少的6.8%和10.6%中,同时将计算成本降低了38%。

Self-supervised learning (SSL) methods such as WavLM have shown promising speech separation (SS) results in small-scale simulation-based experiments. In this work, we extend the exploration of the SSL-based SS by massively scaling up both the pre-training data (more than 300K hours) and fine-tuning data (10K hours). We also investigate various techniques to efficiently integrate the pre-trained model with the SS network under a limited computation budget, including a low frame rate SSL model training setup and a fine-tuning scheme using only the part of the pre-trained model. Compared with a supervised baseline and the WavLM-based SS model using feature embeddings obtained with the previously released 94K hours trained WavLM, our proposed model obtains 15.9% and 11.2% of relative word error rate (WER) reductions, respectively, for a simulated far-field speech mixture test set. For conversation transcription on real meeting recordings using continuous speech separation, the proposed model achieves 6.8% and 10.6% of relative WER reductions over the purely supervised baseline on AMI and ICSI evaluation sets, respectively, while reducing the computational cost by 38%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源