论文标题
全计数统计统计数据
Full-counting statistics of corner charge fluctuations
论文作者
论文摘要
测量结果的特征在于无限的普遍不确定性或累积物的家族,这些家族提供了超出可观察到的均值和差异的信息。在这里,我们研究了一个拐角处的子区域中保守电荷的累积物。我们为区域定律提供了非扰动关系,更有趣的是角度依赖性,显示了如何通过相关函数的几何矩确定的角度。这些对于巨大的通用性(包括强烈互动的系统)下的翻译不变系统。我们通过使用整数和分数填充物的二维拓扑量子大厅和费米子来测试我们的发现。我们发现,奇数累积的形状依赖性与偶数的依赖性不同。例如,第三个累积物在最低的兰道级别显示了整数和分数Laughlin Hall的普遍行为。此外,我们研究了甚至累积物与rényi纠缠熵之间的关系,在填充1/3时,我们在填充1/3时使用分数状态的新结果来比较这些数量在强烈的相互作用方向上。我们讨论了这些发现对其他系统的含义,包括无间隙的狄拉克·费米斯和更一般的保形场理论。
Outcomes of measurements are characterized by an infinite family of generalized uncertainties, or cumulants, which provide information beyond the mean and variance of the observable. Here, we investigate the cumulants of a conserved charge in a subregion with corners. We derive nonperturbative relations for the area law, and more interestingly, the angle dependence, showing how it is determined by geometric moments of the correlation function. These hold for translation invariant systems under great generality, including strongly interacting ones. We test our findings by using two-dimensional topological quantum Hall states of bosons and fermions at both integer and fractional fillings. We find that the odd cumulants' shape dependence differs from the even ones. For instance, the third cumulant shows nearly universal behavior for integer and fractional Laughlin Hall states in the lowest Landau level. Furthermore, we examine the relation between even cumulants and the Rényi entanglement entropy, where we use new results for the fractional state at filling 1/3 to compare these quantities in the strongly interacting regime. We discuss the implications of these findings for other systems, including gapless Dirac fermions, and more general conformal field theories.