论文标题

粒子流高斯和粒子过滤器

Particle Flow Gaussian Sum Particle Filter

论文作者

Comandur, Karthik, Li, Yunpeng, Nannuru, Santosh

论文摘要

粒子流动粒子流(PFGPF)使用可逆粒子流来产生建议密度。它将预测性和后验分布近似为高斯密度。在本文中,我们使用PFGPF过滤器的库来构建粒子流高斯和粒子滤波器(PFGSPF),该粒子粒子滤镜(PFGSPF)将预测性和后部近似为高斯混合模型。这种近似在复杂的估计问题中很有用,在复杂的估计问题中,单个高斯近似不足。我们将该提出的过滤器与PFGPF和其他人在具有挑战性的数值模拟中进行了比较。

Particle flow Gaussian particle flow (PFGPF) uses an invertible particle flow to generate a proposal density. It approximates the predictive and posterior distributions as Gaussian densities. In this paper, we use bank of PFGPF filters to construct a Particle flow Gaussian sum particle filter (PFGSPF), which approximates the predictive and posterior as Gaussian mixture model. This approximation is useful in complex estimation problems where a single Gaussian approximation is not sufficient. We compare the performance of this proposed filter with PFGPF and others in challenging numerical simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源