论文标题
一类灵活的哈伯德 - 斯特拉托尼维奇转换
A flexible class of exact Hubbard-Stratonovich transformations
论文作者
论文摘要
我们考虑了一类Hubbard-Stratonovich转换,适合在量子蒙特卡洛模拟的背景下处理哈伯德相互作用。可调参数$ p $使我们能够不断从离散的iSing辅助字段($ p = \ infty $)到紧凑的辅助领域,该领域将其耦合到正弦的电子($ p = 0 $)。在单频哈伯德模型的测试中,我们发现标志问题的严重性随着$ p $的增加而系统地降低。但是,选择$ p $有限,但是,启用了诸如Langevin或Hamiltonian Monte Carlo方法之类的连续抽样方法。我们通过数值基准探讨了各种模拟方法之间的权衡。
We consider a class of Hubbard-Stratonovich transformations suitable for treating Hubbard interactions in the context of quantum Monte Carlo simulations. A tunable parameter $p$ allows us to continuously vary from a discrete Ising auxiliary field ($p=\infty$) to a compact auxiliary field that couples to electrons sinusoidally ($p=0$). In tests on the single-band Hubbard model, we find that the severity of the sign problem decreases systematically with increasing $p$. Selecting $p$ finite, however, enables continuous sampling methods like the Langevin or Hamiltonian Monte Carlo methods. We explore the tradeoffs between various simulation methods through numerical benchmarks.