论文标题
减少了单数差方程的传输操作员
Reduced transfer operators for singular difference equations
论文作者
论文摘要
对于三角形块Jacobi操作员,仅在偏外条目可逆的情况下,标准传输操作员技术才能起作用。在这些偏对式操作员的范围和内核的合适假设下,这些算子确保了块之间的最小值最小耦合,它显示了如何构建具有通常的kerin kerin空间单位性能以及能量可变的至关重要的单位性能的减少传递操作员。这允许将振荡理论的结果扩展到此类系统。
For tridiagonal block Jacobi operators, the standard transfer operator techniques only work if the off-diagonal entries are invertible. Under suitable assumptions on the range and kernel of these off-diagonal operators which assure a homogeneous minimal coupling between the blocks, it is shown how to construct reduced transfer operators that have the usual Krein space unitarity property and also a crucial monotonicity in the energy variable. This allows to extend the results of oscillation theory to such systems.