论文标题
使用贝叶斯神经网络对逻辑节点的工作量预测
Workload Forecasting of a Logistic Node Using Bayesian Neural Networks
论文作者
论文摘要
目的:由于外部因素,空容器仓库中的流量量高度波动。预测预期的集装箱卡车流量以及具有动态模块以预见未来的工作量在提高工作效率方面起着至关重要的作用。本文研究了相关文献,并设计了一个针对上述问题的预测模型。方法论:该论文开发了一种预测模型,以使用基于贝叶斯神经网络的模型预测空容器仓库中集装箱卡车的交通量。此外,使用具有不同特征的数据集进行了论文实验,以评估模型的各种数据源的预测范围。调查结果:空容器仓库的真实数据用于开发预测模型,并随后验证模型的功能。研究结果显示了模型的性能有效性,并为空容器仓库建立有效的流量和工作量计划系统提供了基础。独创性:本文提出了一个基于贝叶斯深度学习的预测模型,用于使用现实世界数据的空容器仓库的流量和工作量。该设计和实施的预测模型提供了一种解决方案,可以使用该解决方案,该解决方案中的每个演员都可以从优化的工作负载中受益。
Purpose: Traffic volume in empty container depots has been highly volatile due to external factors. Forecasting the expected container truck traffic along with having a dynamic module to foresee the future workload plays a critical role in improving the work efficiency. This paper studies the relevant literature and designs a forecasting model addressing the aforementioned issues. Methodology: The paper develops a forecasting model to predict hourly work and traffic volume of container trucks in an empty container depot using a Bayesian Neural Network based model. Furthermore, the paper experiments with datasets with different characteristics to assess the model's forecasting range for various data sources. Findings: The real data of an empty container depot is utilized to develop a forecasting model and to later verify the capabilities of the model. The findings show the performance validity of the model and provide the groundwork to build an effective traffic and workload planning system for the empty container depot in question. Originality: This paper proposes a Bayesian deep learning-based forecasting model for traffic and workload of an empty container depot using real-world data. This designed and implemented forecasting model offers a solution with which every actor in the container truck transportation benefits from the optimized workload.