论文标题
Carnot,Stirling,Ericsson随机热发动机:最大功率的效率
Carnot, Stirling, Ericsson stochastic heat engines: Efficiency at maximum power
论文作者
论文摘要
这项工作可为执行类似Carnot的随机热发动机以最大的功率获得效率。对于介观发动机,考虑了被光镊子捕获的棕色粒子。该随机发动机的动力学被描述为具有谐波电位的过度抑制兰格文方程,而在不同温度下与两个热浴进行接触,即热($ t_h $)和冷($ t_c $)。使用原始的langevin方法将谐波振荡器langevin方程转换为与平均值$ \ langle x^2(t)\ rangle $相关的宏观方程。在平衡状态下,该数量满足了计算热力学特性的状态样方程。为了获得最大功率的效率,在低消散方法的框架下,被认为是有限的时间周期过程。
This work obtains the efficiency at maximum power for a stochastic heat engine performing Carnot-like, Stirling-like and Ericsson-like cycles. For the mesoscopic engine a Brownian particle trapped by an optical tweezers is considered. The dynamics of this stochastic engine is described as an overdamped Langevin equation with a harmonic potential, whereas is in contact with two thermal baths at different temperatures, namely, hot ($T_h$) and cold ($T_c$). The harmonic oscillator Langevin equation is transformed into a macroscopic equation associated with the mean value $\langle x^2(t)\rangle$ using the original Langevin approach. At equilibrium stationary state this quantity satisfies a state-like equation from which the thermodynamic properties are calculated. To obtained the efficiency at maximum power it is considered the finite-time cycle processes under the framework of low dissipation approach.