论文标题

堆栈内注意神经网络从感兴趣地区预测的自动MRI视野处方

Automated MRI Field of View Prescription from Region of Interest Prediction by Intra-stack Attention Neural Network

论文作者

Lei, Ke, Syed, Ali B., Zhu, Xucheng, Pauly, John M., Vasanawala, Shreyas S.

论文摘要

MRI技术人员对视野(FOV)的手动处方是可变的,可以延长扫描过程。通常,FOV太大或临界解剖结构。我们提出了一个由放射科医师监督培训的深度学习框架,以自动化FOV处方。堆栈内共享的特征提取网络和注意网络用于处理2D图像输入的堆栈,以生成定义矩形区域(ROI)位置的输出标量。注意机制用于使模型集中在堆栈中少量的信息切片上。然后,使神经网络预测的最小的FOV通过从MR采样理论得出的代数操作来计算ROI无叠加的ROI。我们回顾性地收集了2018年2月至2022年2月之间的595例病例。该框架的性能通过与联合(IOU)的相交(IOU)和像素错误进行定量检查,并通过读者研究进行定性研究。我们使用t检验比较所有模型和放射科医生的定量结果。所提出的模型的平均IOU为0.867,在80个测试用例的512像素中的平均ROI位置误差为9.06,比两个基线模型要好得多(P <0.05),与放射科医生没有显着差异(P> 0.12)。最后,拟议框架给出的FOV从经验丰富的放射科医生那里获得了92%的接受率。

Manual prescription of the field of view (FOV) by MRI technologists is variable and prolongs the scanning process. Often, the FOV is too large or crops critical anatomy. We propose a deep-learning framework, trained by radiologists' supervision, for automating FOV prescription. An intra-stack shared feature extraction network and an attention network are used to process a stack of 2D image inputs to generate output scalars defining the location of a rectangular region of interest (ROI). The attention mechanism is used to make the model focus on the small number of informative slices in a stack. Then the smallest FOV that makes the neural network predicted ROI free of aliasing is calculated by an algebraic operation derived from MR sampling theory. We retrospectively collected 595 cases between February 2018 and February 2022. The framework's performance is examined quantitatively with intersection over union (IoU) and pixel error on position, and qualitatively with a reader study. We use the t-test for comparing quantitative results from all models and a radiologist. The proposed model achieves an average IoU of 0.867 and average ROI position error of 9.06 out of 512 pixels on 80 test cases, significantly better (P<0.05) than two baseline models and not significantly different from a radiologist (P>0.12). Finally, the FOV given by the proposed framework achieves an acceptance rate of 92% from an experienced radiologist.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源