论文标题
州空间模型中的最大似然递归状态估计:一种基于不完整数据的统计分析的新方法
Maximum likelihood recursive state estimation in state-space models: A new approach based on statistical analysis of incomplete data
论文作者
论文摘要
本文重新审视了Rauch等人的工作。 (1965年),并为通用状态空间模型开发了一种新颖的方法,用于递归最大似然粒子过滤。新方法基于对系统不完整观察结果的统计分析。引入了分数函数和条件观察到的不完整观测/数据的信息,并讨论了它们的分布属性。一些有关得分函数和不完整数据的信息矩阵的身份被得出。根据分数函数和观察到的信息矩阵,提出了国家矢量的最大似然估计。特别是,为了处理非线性状态空间,开发了一种顺序的蒙特卡洛方法。它是由EM梯度粒子过滤递归给出的,该滤波扩展了Lange(1995)以进行状态估计。为了得出状态估计误差的协方差矩阵,提出了一种明确的信息矩阵。它扩展了路易(Louis,1982)的一般矩阵公式,以估算到州矢量估计。状态转变概率分布的(Neumann)边界条件下,该矩阵的逆与Cramer-Rao的下限在无偏置状态估计器的估计误差的协方差矩阵上相吻合。对于线性模型,该方法表明Kalman滤波器是一个完全有效的状态估计器,其估计误差的协方差矩阵与Cramer-Rao下限一致。讨论了一些数值示例,以说明主要结果。
This paper revisits the work of Rauch et al. (1965) and develops a novel method for recursive maximum likelihood particle filtering for general state-space models. The new method is based on statistical analysis of incomplete observations of the systems. Score function and conditional observed information of the incomplete observations/data are introduced and their distributional properties are discussed. Some identities concerning the score function and information matrices of the incomplete data are derived. Maximum likelihood estimation of state-vector is presented in terms of the score function and observed information matrices. In particular, to deal with nonlinear state-space, a sequential Monte Carlo method is developed. It is given recursively by an EM-gradient-particle filtering which extends the work of Lange (1995) for state estimation. To derive covariance matrix of state-estimation errors, an explicit form of observed information matrix is proposed. It extends Louis (1982) general formula for the same matrix to state-vector estimation. Under (Neumann) boundary conditions of state transition probability distribution, the inverse of this matrix coincides with the Cramer-Rao lower bound on the covariance matrix of estimation errors of unbiased state-estimator. In the case of linear models, the method shows that the Kalman filter is a fully efficient state estimator whose covariance matrix of estimation error coincides with the Cramer-Rao lower bound. Some numerical examples are discussed to exemplify the main results.