论文标题

使用图形更改来反驳社交网络上的错误信息

Countering Misinformation on Social Networks Using Graph Alterations

论文作者

Bayiz, Yigit E., Topcu, Ufuk

论文摘要

我们限制了在类似社会媒体的环境中传播错误信息的同时,可以保留正确的信息的传播。我们将环境建模为一个随机的用户网络,其中每个新闻项目在网络中以连续的级联反复传播。现有的研究表明,错误信息和正确信息的级联行为受用户两极分化和反思性的影响不同。我们表明,这种差异可用于改变网络动力学,以有选择地阻碍错误信息内容的传播。为了实施这些更改,我们引入了一种基于优化的概率辍学方法,该方法随机删除用户之间的连接以实现最小的错误信息传播。我们使用纪律处分的凸编程来优化这些删除概率,以减少可能的网络更改空间。我们使用模拟的社交网络测试该算法的有效性。在我们的测试中,我们使用基于随机块模型的两个合成网络结构以及使用从Twitter收集的数据集随机采样生成的自然网络结构。结果表明,算法平均将误导性内容的级联大小降低了合成网络测试的$ 70 \%$ $,在自然网络测试中最多可降低$ 45 \%$ $,同时保持至少$ 1.5 $的分支比率为$ 1.5 $。

We restrict the propagation of misinformation in a social-media-like environment while preserving the spread of correct information. We model the environment as a random network of users in which each news item propagates in the network in consecutive cascades. Existing studies suggest that the cascade behaviors of misinformation and correct information are affected differently by user polarization and reflexivity. We show that this difference can be used to alter network dynamics in a way that selectively hinders the spread of misinformation content. To implement these alterations, we introduce an optimization-based probabilistic dropout method that randomly removes connections between users to achieve minimal propagation of misinformation. We use disciplined convex programming to optimize these removal probabilities over a reduced space of possible network alterations. We test the algorithm's effectiveness using simulated social networks. In our tests, we use both synthetic network structures based on stochastic block models, and natural network structures that are generated using random sampling of a dataset collected from Twitter. The results show that on average the algorithm decreases the cascade size of misinformation content by up to $70\%$ in synthetic network tests and up to $45\%$ in natural network tests while maintaining a branching ratio of at least $1.5$ for correct information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源