论文标题
广义弹性翻译孤子
Generalized Elastic Translating Solitons
论文作者
论文摘要
我们研究了通过平面曲线的曲率的力量将孤子溶液转换为流动。根据曲率,我们将这些孤子表征为功能的临界曲线。更准确地说,将孤子传递到曲率的力量中,被证明是普遍的弹性曲线。特别是,我们着眼于曲线缩短流,我们推断出了Grim Reaper曲线的新变化表征。
We study translating soliton solutions to the flow by powers of the curvature of curves in the plane. We characterize these solitons as critical curves for functionals depending on the curvature. More precisely, translating solitons to the flow by powers of the curvature are shown to be generalized elastic curves. In particular, focusing on the curve shortening flow, we deduce a new variational characterization of the grim reaper curve.