论文标题

迈向时空算法公平:填充黑洞

Towards Algorithmic Fairness in Space-Time: Filling in Black Holes

论文作者

Flynn, Cheryl, Guha, Aritra, Majumdar, Subhabrata, Srivastava, Divesh, Zhou, Zhengyi

论文摘要

新技术和地理空间数据的可用性引起了人们对社会中存在的时空偏见的关注。例如:COVID-19大流行强调了宽带服务的可用性差异及其在数字鸿沟中的作用;美国的环境正义运动提高了人们对源于历史红线实践的少数民族对健康影响的认识。研究发现,在开源地理空间数据的收集和共享中,质量和覆盖率各不相同。尽管关于机器学习(ML)公平的文献广泛,但很少有人提出算法来减轻此类偏见。在本文中,我们强调了通过科学文献和媒体中介绍的镜头来量化和解决时空偏见的独特挑战。我们设想了需要开发或适应以量化和克服这些挑战的ML策略的路线图,包括转移学习,主动学习和强化学习技术。此外,我们讨论了ML在与空间公平有关的问题上为政策制定者提供指导的潜在作用。

New technologies and the availability of geospatial data have drawn attention to spatio-temporal biases present in society. For example: the COVID-19 pandemic highlighted disparities in the availability of broadband service and its role in the digital divide; the environmental justice movement in the United States has raised awareness to health implications for minority populations stemming from historical redlining practices; and studies have found varying quality and coverage in the collection and sharing of open-source geospatial data. Despite the extensive literature on machine learning (ML) fairness, few algorithmic strategies have been proposed to mitigate such biases. In this paper we highlight the unique challenges for quantifying and addressing spatio-temporal biases, through the lens of use cases presented in the scientific literature and media. We envision a roadmap of ML strategies that need to be developed or adapted to quantify and overcome these challenges -- including transfer learning, active learning, and reinforcement learning techniques. Further, we discuss the potential role of ML in providing guidance to policy makers on issues related to spatial fairness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源