论文标题

分析差分差异方程$ y(x+1/2)-y(x-1/2)= y'(x)$

Analysis of the Differential-Difference Equation $y(x+1/2)-y(x-1/2) = y'(x)$

论文作者

Yadeta, Hailu Bikila

论文摘要

在本文中,我们研究了一些差分差异方程的解决方案技术$$ y'(x)= y(x + 1/2) - y(x- 1/2),$$首先没有初始条件,然后在单位间隔$ [-1/2,1/2] $上定义了一些初始功能$ h $。我们表明了一些足够的条件表明,初始功能$ h $是可以接受的,即,它在大约$ 0 $的某些对称间隔上产生独特的连续解决方案。

In this paper we study some solution techniques of differential-difference equation $$ y'(x) = y(x + 1/2)- y(x- 1/2),$$ first without an initial condition and then with some initial function $h$ defined on the unit interval $ [-1/2, 1/2]$. We show some sufficient conditions that an initial function $h$ is admissible, i.e., it yields a unique continuous solution on some symmetric interval about $0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源