论文标题

避免整数排列中的单调算术进程

Avoiding Monotone Arithmetic Progressions in Permutations of Integers

论文作者

Adenwalla, Sarosh

论文摘要

整数避免了单调算术算术$ 6 $的置换(Geneson,2018年)。我们通过构建整数的排列来改进这一点,避免了单调算术算术$ 5 $。我们还构建了整数和正整数的置换,以改善先前的上下密度结果。在(Davis等人,1977年)中,他们构建了积极​​整数的双线无限置换,避免了单调算术算术的长度$ 4 $。我们构建了整数的双线无限置换,以避免单调算术算术$ 5 $。在(Lesaulnier and Vijay,2011年)中构建了避免单调算术算术$ 4 $的单调算术进程的积极整数的排列。我们概括了这个结果,并表明,对于每个$ k \ geq 1 $,存在一个正整数的排列,避免了单调算术算术的长度为$ 4 $的单调算术,而常见的差异不可除以$ 2^k $。此外,我们指定了$ [1,n] $的排列结构,该结构避免了长度$ 3 $单调算术算术进度模式mod $ n $(Davis等,1977),并为避免长度$ k $ k $ k $ monotone arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetic arithmetions mod $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $。

A permutation of the integers avoiding monotone arithmetic progressions of length $6$ was constructed in (Geneson, 2018). We improve on this by constructing a permutation of the integers avoiding monotone arithmetic progressions of length $5$. We also construct permutations of the integers and the positive integers that improve on previous upper and lower density results. In (Davis et al. 1977) they constructed a doubly infinite permutation of the positive integers that avoids monotone arithmetic progressions of length $4$. We construct a doubly infinite permutation of the integers avoiding monotone arithmetic progressions of length $5$. A permutation of the positive integers that avoided monotone arithmetic progressions of length $4$ with odd common difference was constructed in (LeSaulnier and Vijay, 2011). We generalise this result and show that for each $k\geq 1$, there exists a permutation of the positive integers that avoids monotone arithmetic progressions of length $4$ with common difference not divisible by $2^k$. In addition, we specify the structure of permutations of $[1,n]$ that avoid length $3$ monotone arithmetic progressions mod $n$ as defined in (Davis et al. 1977) and provide an explicit construction for a multiplicative result on permutations that avoid length $k$ monotone arithmetic progressions mod $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源