论文标题

基于机器学习的算法偏见

Algorithmic Bias in Machine Learning Based Delirium Prediction

论文作者

Tripathi, Sandhya, Fritz, Bradley A, Avidan, Michael S, Chen, Yixin, King, Christopher R

论文摘要

尽管del妄的预测模型,这是一般住院或手术后通常发生的状况,尚未获得巨大的流行,但由于健康的决定因素与ir妄风险之间的现有关联,它们的算法偏见评估至关重要。在这种情况下,使用模仿III和另一个学术医院数据集,我们提供了一些初步的实验证据,以表明社会人口统计学特征(例如性别和种族)如何影响跨亚组的模型性能。有了这项工作,我们的目的是开始讨论有关使用ML的早期,种族和社会经济因素对早期发现和预防del妄的交叉性影响的讨论。

Although prediction models for delirium, a commonly occurring condition during general hospitalization or post-surgery, have not gained huge popularity, their algorithmic bias evaluation is crucial due to the existing association between social determinants of health and delirium risk. In this context, using MIMIC-III and another academic hospital dataset, we present some initial experimental evidence showing how sociodemographic features such as sex and race can impact the model performance across subgroups. With this work, our intent is to initiate a discussion about the intersectionality effects of old age, race and socioeconomic factors on the early-stage detection and prevention of delirium using ML.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源