论文标题

在BDP Iwasawa的主要猜想上

On the BDP Iwasawa main conjecture for modular forms

论文作者

Lei, Antonio, Zhao, Luochen

论文摘要

让$ k $是一个虚构的二次领域,其中$ p $ splits,$ p \ geq5 $ a Prime数字和$ f $均匀的重量和级别$ n> 3 $,这与$ p $。根据Heegner假设,Kobayashi-Ota表明,涉及Bertolini-Darmon-Prasanna $ p $ p $ -Adic $ l $ unctunction的iWasawa Main Main的猜想包括在$ \ MATHBB {Q} _p $。在某些假设下,我们改善了Kobayahsi-Ota的结果,并表明同一包含在同一包含中。我们的结果意味着几个反风速器组组的Iwasawa $μ$ $ invariants消失了。

Let $K$ be an imaginary quadratic field where $p$ splits, $p\geq5$ a prime number and $f$ an eigen-newform of even weight and level $N>3$ that is coprime to $p$. Under the Heegner hypothesis, Kobayashi--Ota showed that one inclusion of the Iwasawa main conjecture of $f$ involving the Bertolini--Darmon--Prasanna $p$-adic $L$-function holds after tensoring by $\mathbb{Q}_p$. Under certain hypotheses, we improve upon Kobayahsi--Ota's result and show that the same inclusion holds integrally. Our result implies the vanishing of the Iwasawa $μ$-invariants of several anticyclotomic Selmer groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源