论文标题

Zagier排名NAHM问题的三个示例的明确表格和证明

Explicit Forms and Proofs of Zagier's Rank Three Examples for Nahm's Problem

论文作者

Wang, Liuquan

论文摘要

令$ r \ geq 1 $为正整数,$ a $ a $ a真正的正面半定义对称$ r \ times r $ r $理性矩阵,$ b $是长度$ r $的理性向量,以及$ c $ a a a a a $ c $ a是理性标量。 NAHM的问题是要找到所有三元组$(a,b,c)$,以便$ r $ -fold $ q $ q $ -hyperemotem $$ f_ f_ {a,b,c}(q):= \ sum_ {n =(n_1,\ dots,\ dots,n_r dots,n_r) 0})^r} \ frac {q^{\ frac {1} {2} n^\ mathrm {t} an+n^\ mathrm {t} b+c}}}}} {(q; q; q; q; q; q; q; q) $(a,b,c)$ a模块化三倍。当等级$ r = 3 $,经过大量的计算机搜索后,Zagier提供了十二套猜想的模块化三元组,并证明了其中三个。我们证明了许多涉及三重总和的Rogers-Ramanujan类型身份。这些身份给出了模块化形式表示形式,从而验证了Zagier的所有等级三个示例。特别是,我们证明了Zagier的猜想身份。

Let $r\geq 1$ be a positive integer, $A$ a real positive semi-definite symmetric $r\times r$ rational matrix, $B$ a rational vector of length $r$, and $C$ a rational scalar. Nahm's problem is to find all triples $(A,B,C)$ such that the $r$-fold $q$-hypergeometric series $$f_{A,B,C}(q):=\sum_{n=(n_1,\dots,n_r)^\mathrm{T}\in (\mathbb{Z}_{\geq 0})^r} \frac{q^{\frac{1}{2}n^\mathrm{T} An+n^\mathrm{T} B+C}}{(q;q)_{n_1}\cdots (q;q)_{n_r}}$$ becomes a modular form, and we call such $(A,B,C)$ a modular triple. When the rank $r=3$, after extensive computer searches, Zagier provided twelve sets of conjectural modular triples and proved three of them. We prove a number of Rogers-Ramanujan type identities involving triple sums. These identities give modular form representations for and thereby verify all of Zagier's rank three examples. In particular, we prove a conjectural identity of Zagier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源