论文标题
崩溃的晶体:在水中NaCl的溶解机理上
Crumbling Crystals: On the Dissolution Mechanism of NaCl in Water
论文作者
论文摘要
地球上的生命取决于离子盐在水中的溶解,尤其是NaCl。但是,对过程的原子规模的理解仍然难以捉摸。模拟可以方便地研究溶解,因为它们提供了可能难以通过实验获得的时空分辨率。然而,各种分子间相互作用的复杂性需要仔细的治疗和长时间的模拟,这两者通常都受到计算费用的阻碍。在这里,我们利用机器学习潜在方法的进步来首次在理论水平上解决NaCl在水中的溶解机制。出现的图片是在其快速瓦解之前稳定的离子拆开的稳定脱落,让人联想到崩溃。崩溃的发作可以通过表面与晶体体积的比率的强烈增加来解释。总体而言,溶解由一系列高度动力学的微观子处理组成,导致了固有的随机机制。这些原子水平的见解现在为对其他晶体的溶解机制的一般理解铺平了道路,并且该方法是针对更复杂的最新感兴趣的系统(例如流量下的水/盐界面和固定下的盐晶体)进行的。
Life on Earth depends upon the dissolution of ionic salts in water, particularly NaCl. However, an atomistic scale understanding of the process remains elusive. Simulations lend themselves conveniently to studying dissolution since they provide the spatio-temporal resolution that can be difficult to obtain experimentally. Nevertheless, the complexity of various inter- and intra-molecular interactions require careful treatment and long time scale simulations, both of which are typically hindered by computational expense. Here, we use advances in machine learning potential methodology to resolve for the first time at an ab initio level of theory the dissolution mechanism of NaCl in water. The picture that emerges is that of a steady ion-wise unwrapping of the crystal preceding its rapid disintegration, reminiscent of crumbling. The onset of crumbling can be explained by a strong increase in the ratio of the surface to volume of the crystal. Overall, dissolution is comprised of a series of highly dynamical microscopic sub-processes, resulting in an inherently stochastic mechanism. These atomistic level insights now pave the way for a general understanding of dissolution mechanisms in other crystals, and the methodology is primed for more complex systems of recent interest such as water/salt interfaces under flow and salt crystals under confinement.