论文标题

RUYA:大数据处理的集群配置的内存感知迭代优化

Ruya: Memory-Aware Iterative Optimization of Cluster Configurations for Big Data Processing

论文作者

Will, Jonathan, Thamsen, Lauritz, Bader, Jonathan, Scheinert, Dominik, Kao, Odej

论文摘要

即使对于像数据工程师这样的专家用户,为大型集群中的数据处理作业选择适当的计算资源也很困难。选择不足会导致成本大大增加,而不会显着提高绩效。选择有效资源配置的一个关键方面是避免内存瓶颈。通过提前了解作业所需的记忆,可以大大减少最佳资源配置的搜索空间。 因此,我们提出了RUYA,这是一种基于迭代探索缩小搜索空间的数据处理群集配置优化数据处理群集配置的方法。首先,我们仅在单台计算机上使用数据集的小样本进行工作分析运行,以建模作业的内存使用模式。其次,我们优先考虑具有适当数量的总内存的群集配置,并且在此简化的搜索空间中,我们迭代地搜索具有贝叶斯优化的最佳群集配置。此搜索过程一旦收敛到对给定作业最佳的配置上,就会停止。在我们在具有1031 Spark和Hadoop作业的数据集上的评估中,我们看到搜索迭代的降低,与基线相比,找到最佳配置的一半。

Selecting appropriate computational resources for data processing jobs on large clusters is difficult, even for expert users like data engineers. Inadequate choices can result in vastly increased costs, without significantly improving performance. One crucial aspect of selecting an efficient resource configuration is avoiding memory bottlenecks. By knowing the required memory of a job in advance, the search space for an optimal resource configuration can be greatly reduced. Therefore, we present Ruya, a method for memory-aware optimization of data processing cluster configurations based on iteratively exploring a narrowed-down search space. First, we perform job profiling runs with small samples of the dataset on just a single machine to model the job's memory usage patterns. Second, we prioritize cluster configurations with a suitable amount of total memory and within this reduced search space, we iteratively search for the best cluster configuration with Bayesian optimization. This search process stops once it converges on a configuration that is believed to be optimal for the given job. In our evaluation on a dataset with 1031 Spark and Hadoop jobs, we see a reduction of search iterations to find an optimal configuration by around half, compared to the baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源