论文标题

通过使用光子球附近射线的偏转角的0阶递观序列的重力镜头

Gravitational lensing by using the 0th order of affine perturbation series of the deflection angle of a ray near a photon sphere

论文作者

Tsukamoto, Naoki

论文摘要

光子球附近射线偏转角的仿射扰动序列的0阶比在强挠度极限中的偏转角度更准确,这经常被使用,因为以后的具有隐藏的误差项。我们通过使用光子球的一般渐近式,静态和球形对称的空间,使用0阶仿射扰动序列研究重力镜头。我们将公式应用于Schwarzschild Black Hole,Reissner-NordströmBlack Hole和Ellis-Bronnikov蠕虫空位作为示例。通过使用挠度角度比较可观察的,我们表明我们可以在强挠度限制中忽略隐藏误差术语在与光子球体中通常的镜头配置中可观察到的偏转角度的效果,因为隐藏的误差项很小。另一方面,在复古的镜头构型中,强远程限制分析中的挠度角度为几个,偏转角的仿射扰动序列的0顺序几乎具有误差的一半。因此,在复古镜头构型中,我们应该使用偏转角的仿射扰动序列的0阶,而不是强触发限制分析中的偏转角。偏转角的仿射扰动序列的0顺序可以通过在强远程限制限制分析中使用偏转角度比偏差百分比更明亮的放大率。

The 0th order of affine perturbation series of the deflection angle of a ray near a photon sphere is more accurate than a deflection angle in a strong deflection limit, which is used often, because the later has hidden error terms. We investigate gravitational lensing by using 0th order affine perturbation series of the deflection angle in a general asymptotically-flat, static, and spherical symmetric spacetime with the photon sphere. We apply our formula to Schwarzschild black hole, Reissner-Nordström black hole, and Ellis-Bronnikov wormhole spacetimes as examples. By comparing observables by using the deflection angles, we show that we can ignore the effect of the hidden error terms in the deflection angle in the strong deflection limit on the observables in a usual lens configuration with the photon sphere since the hidden error terms are tiny. On the other hand, in a retro lensing configuration, the deflection angle in the strong-deflection-limit analysis have error of several percent and the 0th order of affine perturbation series of the deflection angle has almost half of the error. Thus, in the retro lensing configuration, we should use the 0th order of affine perturbation series of the deflection angle rather than the deflection angle in the strong-deflection-limit analysis. The 0th order of affine perturbation series of the deflection angle can give a brighter magnification by a dozen percent than the one by using the deflection angle in the strong-deflection-limit analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源