论文标题
正式的部分行动
Amenable partial actions
论文作者
论文摘要
我们介绍并研究了局部紧凑(Borel)组$ g $在拓扑(标准Borel)空间的各种持续性连续(Borel)部分作用的概念。我们还研究了BANACH空间中本地紧凑型组的部分表示的适当性,并表明,如果相应的Koopman局部表示在相应的$ l^2 $ -Space上是可以轻松的。我们从封闭的亚组引入了诱导的部分表示的概念,并探索了诱导性的不良性类型属性的毅力。
We introduce and study various notions of amenability continuous (Borel) partial actions of locally compact (Borel) groups $G$ on topological (standard Borel) spaces. We also study amenability of partial representations of a locally compact group in a Banach space and show that a partial action on a measure space is amenable iff the corresponding Koopman partial representation on the corresponding $L^2$-space is amenable. We introduce the notion of induced partial representation from a closed subgroup and explore perseverance of amenability type properties under induction.