论文标题
开发临床相关微钙化的3D模型
Development of a 3D model of clinically relevant microcalcifications
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A realistic 3D anthropomorphic software model of microcalcifications may serve as a useful tool to assess the performance of breast imaging applications through simulations. We present a method allowing to simulate visually realistic microcalcifications with large morphological variability. Principal component analysis (PCA) was used to analyze the shape of 281 biopsied microcalcifications imaged with a micro-CT. The PCA analysis requires the same number of shape components for each input microcalcification. Therefore, the voxel-based microcalcifications were converted to a surface mesh with same number of vertices using a marching cube algorithm. The vertices were registered using an iterative closest point algorithm and a simulated annealing algorithm. To evaluate the approach, input microcalcifications were reconstructed by progressively adding principal components. Input and reconstructed microcalcifications were visually and quantitatively compared. New microcalcifications were simulated using randomly sampled principal components determined from the PCA applied to the input microcalcifications, and their realism was appreciated through visual assessment. Preliminary results have shown that input microcalcifications can be reconstructed with high visual fidelity when using 62 principal components, representing 99.5% variance. For that condition, the average L2 norm and dice coefficient were respectively 10.5 $μ$m and 0.93. Newly generated microcalcifications with 62 principal components were found to be visually similar, while not identical, to input microcalcifications. The proposed PCA model of microcalcification shapes allows to successfully reconstruct input microcalcifications and to generate new visually realistic microcalcifications with various morphologies.