论文标题

在hopf图的Leavitt路径代数

On Leavitt path algebras of Hopf graphs

论文作者

Nam, T. G., Phuc, N. T.

论文摘要

在本文中,我们提供了与对$(g,\ mathfrak {r})$相关的HOPF图的结构,由组$ g $以及RAMIFIENT DATAS $ \ MATHFRAK {r} $及其Leavitt Path代数组成。因此,我们表征了Gelfand-Kirillov维度,稳定等级,纯粹的无限简单性以及通过RAMIFIENT DATA $ \ MATHFRAK {R} $和$ G $的HOPF图的Leavitt Path代数的非零有限维表示。

In this paper, we provide the structure of Hopf graphs associated to pairs $(G, \mathfrak{r})$ consisting of groups $G$ together with ramification datas $\mathfrak{r}$ and their Leavitt path algebras. Consequently, we characterize the Gelfand-Kirillov dimension, the stable rank, the purely infinite simplicity and the existence of a nonzero finite dimensional representation of the Leavitt path algebra of a Hopf graph via properties of ramification data $\mathfrak{r}$ and $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源