论文标题
用于乘以$ 3 \ times3 $矩阵的短算法的不存在$ s_4 \ times s_3 $,ii
Non-existence of a short algorithm for multiplication of $3\times3$ matrices with group $S_4\times S_3$, II
论文作者
论文摘要
事实证明,在某个组同构至$ s_4 \ times s_3 $下不变的乘以乘以$ 3 $的乘法乘以$ 3 \ times3 $矩阵的算法。证明利用了该组在张量CUBE $(M_3({\ Mathbb C})中的可分解张量上的轨道的描述)^{\ otimes3} $,该$早于之前获得。
It is proved that there is no an algorithm for multiplication of $3\times3$ matrices of multiplicative length $\leq23$ that is invariant under a certain group isomorphic to $S_4\times S_3$. The proof makes use of description of the orbits of this group on decomposable tensors in the tensor cube $(M_3({\mathbb C}))^{\otimes3}$ which was obtained earlier.