论文标题
部分可观测时空混沌系统的无模型预测
A Hypergraph-Based Machine Learning Ensemble Network Intrusion Detection System
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Network intrusion detection systems (NIDS) to detect malicious attacks continue to meet challenges. NIDS are often developed offline while they face auto-generated port scan infiltration attempts, resulting in a significant time lag from adversarial adaption to NIDS response. To address these challenges, we use hypergraphs focused on internet protocol addresses and destination ports to capture evolving patterns of port scan attacks. The derived set of hypergraph-based metrics are then used to train an ensemble machine learning (ML) based NIDS that allows for real-time adaption in monitoring and detecting port scanning activities, other types of attacks, and adversarial intrusions at high accuracy, precision and recall performances. This ML adapting NIDS was developed through the combination of (1) intrusion examples, (2) NIDS update rules, (3) attack threshold choices to trigger NIDS retraining requests, and (4) a production environment with no prior knowledge of the nature of network traffic. 40 scenarios were auto-generated to evaluate the ML ensemble NIDS comprising three tree-based models. The resulting ML Ensemble NIDS was extended and evaluated with the CIC-IDS2017 dataset. Results show that under the model settings of an Update-ALL-NIDS rule (specifically retrain and update all the three models upon the same NIDS retraining request) the proposed ML ensemble NIDS evolved intelligently and produced the best results with nearly 100% detection performance throughout the simulation.