论文标题
部分可观测时空混沌系统的无模型预测
Self-consistent implementation of locally scaled self-interaction-correction method
论文作者
论文摘要
最近提出的局部自我交往校正(LSIC)方法[Zope,R。R.等,J。Chem。物理。 151,214108(2019)]是一种单电子自我交互 - 校正(SIC)方法,它使用Iso-Orbital指示器通过缩放交换率和库仑能密度来在空间中的每个点应用SIC。对于单电子密度,LSIC方法是精确的,还恢复了未校正的密度函数近似的均匀电子气体极限,并将其减少到众所周知的Perdew-Zunger SIC(PZSIC)方法中。本文使用Weizsäcker和Kohn-Sham动能密度作为ISO轨道指示器的比率提出了LSIC方法的自洽实现。也为LSIC能量功能实施了Fermi-Löwdin轨道上的原子力以及Fermi-Löwdin轨道上的力。结果表明,与某些最广泛使用的GGA功能(例如,PBE)和BH6数据库的屏障高度相比,具有最简单的局部自旋密度功能的LSIC预测AE6数据集的雾化能的雾化能比某些广泛使用的混合功能更好(例如PBE0和B3LYP)。 LSIC方法[平均绝对误差(MAE)为0.008Å],预测一组分子的键长比PZSIC-LSDA(MAE0.042Å)和LSDA(0.011Å)更好。这项工作表明,可以使用适当设计的SIC方法从最简单的密度函数中从最简单的密度函数中获得准确的结果。
Recently proposed local self-interaction correction (LSIC) method [Zope, R. R. et al., J. Chem. Phys. 151, 214108 (2019)] is a one-electron self-interaction-correction (SIC) method that uses an iso-orbital indicator to apply the SIC at each point in space by scaling the exchange-correlation and Coulomb energy densities. The LSIC method is exact for the one-electron densities, also recovers the uniform electron gas limit of the uncorrected density functional approximation, and reduces to the well-known Perdew-Zunger SIC (PZSIC) method as a special case. This article presents the self-consistent implementation of the LSIC method using the ratio of Weizsäcker and Kohn-Sham kinetic energy densities as an iso-orbital indicator. The atomic forces as well as the forces on the Fermi-Löwdin orbitals are also implemented for the LSIC energy functional. Results show that LSIC with the simplest local spin density functional predicts atomization energies of AE6 dataset better than some of the most widely used GGA functional (e.g. PBE) and barrier heights of BH6 database better than some of the most widely used hybrid functionals (e.g. PBE0 and B3LYP). The LSIC method [mean absolute error (MAE) of 0.008 Å] predicts bond lengths of a small set of molecules better than the PZSIC-LSDA (MAE 0.042 Å) and LSDA (0.011 Å). This work shows that accurate results can be obtained from the simplest density functional by removing the self-interaction-errors using an appropriately designed SIC method.