论文标题
指数希尔伯特系列和分层log线性模型
Exponential Hilbert series and hierarchical log-linear models
论文作者
论文摘要
考虑一个由简单复合物,$γ$和整数矩阵$a_γ$给出的层次结构对数线性模型。我们给出了对数$γ$的指数希尔伯特系列中的对数转换给出的$a_γ$等级的新表征。我们表明,如果$ x $中的每个随机变量都具有相同数量的可能结果,则此公式将$γ$的面部向量减少到一个简单的描述。如果$γ$进一步满足Dehn-Sommerville关系,那么我们给出了一个非常简单的公式,用于计算$A_γ$的等级,从而为模型的自由度和自由度的数量和数量。
Consider a hierarchical log-linear model, given by a simplicial complex, $Γ$, and integer matrix $A_Γ$. We give a new characterization of the rank of $A_Γ$ given by a logarithmic transformation on the exponential Hilbert series of $Γ$. We show that, if each random variable in $X$ has the same number of possible outcomes, then this formula reduces to a simple description in terms of the face vector of $Γ$. If $Γ$ further satisfies the Dehn-Sommerville relations, then we give an exceptionally simple formula for computing the rank of $A_Γ$, and thus the dimension and the number of degrees of freedom of the model.