论文标题
关于可变系数schrödinger方程的唯一性
On the uniqueness of variable coefficient Schrödinger equations
论文作者
论文摘要
我们证明了具有有限的真实电势的线性变量系数Schrödinger方程的独特延续属性。在领先系数上的某些较小条件下,我们证明,在两个不同时间时,溶液的衰减速度比任何立方指数速率快的速度必须相同。假设横向各向异性类型的条件,我们在Accauriaza-Kenig-Ponce-Ponce-Vega的一系列作品中恢复了尖锐的高斯(二倍指数)速率[14,17,18]。
We prove unique continuation properties for linear variable coefficient Schrödinger equations with bounded real potentials. Under certain smallness conditions on the leading coefficients, we prove that solutions decaying faster than any cubic exponential rate at two different times must be identically zero. Assuming a transversally anisotropic type condition, we recover the sharp Gaussian (quadratic exponential) rate in the series of works by Escauriaza-Kenig-Ponce-Vega [14, 17, 18].