论文标题

用于使用IMU测量的动态指纹刻印无线电图创建算法

Algorithm for Dynamic Fingerprinting Radio Map Creation Using IMU Measurements

论文作者

Brida, Peter, Machaj, Juraj, Racko, Jan, Krejcar, Ondrej

论文摘要

尽管最近出现了大量基于位置的服务,但开发了室内定位解决方案,以在传统上基于卫星的定位系统无法提供准确位置估计的环境中提供可靠的位置信息。室内定位系统可以基于许多技术。但是,无线电网络和更精确的Wi-Fi网络似乎吸引了大多数研究团队的注意。基于Wi-Fi的系统中使用的最广泛使用的本地化方法是基于指纹框架。但是,指纹算法需要无线电图进行位置估计。本文将描述动态无线电图创建的解决方案,该解决方案旨在减少构建无线电图所需的时间。所提出的解决方案是使用IMU(惯性测量单元)的测量结果,这些测量由粒子滤清器死亡计算算法处理。然后,由提议的参考点合并算法处理由已实现的死亡计算算法生成的参考点(RP),以优化无线电地图大小并合并相似的RPS。在实际环境中测试了所提出的解决方案,并通过确定性指纹定位算法的实现进行了评估,并将所达到的结果与使用静态无线电图获得的结果进行了比较。论文中提出的已达到的结果表明,即使使用具有低密度参考点的动态图,定位算法也达到了相似的精度。

While a vast number of location-based services appeared lately, indoor positioning solutions are developed to provide reliable position information in environments where traditionally used satellite-based positioning systems cannot provide access to accurate position estimates. Indoor positioning systems can be based on many technologies; however, radio networks and more precisely Wi-Fi networks seem to attract the attention of a majority of the research teams. The most widely used localization approach used in Wi-Fi-based systems is based on fingerprinting framework. Fingerprinting algorithms, however, require a radio map for position estimation. This paper will describe a solution for dynamic radio map creation, which is aimed to reduce the time required to build a radio map. The proposed solution is using measurements from IMUs (Inertial Measurement Units), which are processed with a particle filter dead reckoning algorithm. Reference points (RPs) generated by the implemented dead reckoning algorithm are then processed by the proposed reference point merging algorithm, in order to optimize the radio map size and merge similar RPs. The proposed solution was tested in a real-world environment and evaluated by the implementation of deterministic fingerprinting positioning algorithms, and the achieved results were compared with results achieved with a static radio map. The achieved results presented in the paper show that positioning algorithms achieved similar accuracy even with a dynamic map with a low density of reference points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源