论文标题

换向器简单代数的派生和同构

Derivations and homomorphisms in commutator-simple algebras

论文作者

Alaminos, J., Brešar, M., Extremera, J., Godoy, M. L. C., Villena, A. R.

论文摘要

如果$ [a,a] $不包含$ a $的非零理想,我们将$ commutator-simple称为“代数”。在提供了几个示例之后,我们表明在这些代数衍生物中取决于适用于局部推导的条件。这使我们能够证明每个连续的本地派生$ d \ colon l^1(g)\至l^1(g)$,其中$ g $是一个单模型的本地紧凑型组,都是派生。我们还对换向器 - 简单代数中的同构图形图发表了一些评论。

We call an algebra $A$ commutator-simple if $[A,A]$ does not contain nonzero ideals of $A$. After providing several examples, we show that in these algebras derivations are determined by a condition that is applicable to the study of local derivations. This enables us to prove that every continuous local derivation $D\colon L^1(G)\to L^1(G)$, where $G$ is a unimodular locally compact group, is a derivation. We also give some remarks on homomorphism-like maps in commutator-simple algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源