论文标题
$(k+1)$ - $ n $ - 分段量子状态的部分纠缠措施
A $(k+1)$-partite entanglement measure of $N$-partite quantum states
论文作者
论文摘要
\ texQuotedBlleft的概念密度MATRX \ texquotedblright的置换部分构成了多Quipit Systems的纠缠表征的重要工具。在本文中,我们首先介绍$(k+1)$ - $ n $ - 分段量子系统的部分纠缠措施,该量子系统具有纠缠措施的理想属性。此外,我们通过考虑多部分状态的置换部分,在此措施上给出了强大的界限。我们给出了有效可测量度的$(k+1)$ - 部分纠缠的两个定义。最后,给出了一些具体的例子来说明我们结果的有效性。
The concept of \textquotedblleft the permutationally invariant part of a density matrx\textquotedblright constitutes an important tool for entanglement characterization of multiqubit systems. In this paper, we first present $(k+1)$-partite entanglement measure of $N$-partite quantum system, which possesses desirable properties of an entanglement measure. Moreover, we give strong bounds on this measure by considering the permutationally invariant part of a multipartite state. We give two definitions of efficient measurable degree of $(k+1)$-partite entanglement. Finally, several concrete examples are given to illustrate the effectiveness of our results.