论文标题

链覆盖了没有无限抗的poset的数量

The chain covering number of a poset with no infinite antichains

论文作者

Abraham, Uri, Pouzet, Maurice

论文摘要

Poset $ P $的链条覆盖数$ \ cov(p)$是覆盖$ p $所需的链数。对于红衣主教$ν$,我们提供了一系列基数和覆盖数量$ν$的列表,以便对于每个poset $ p $,没有无限抗敌,$ \ cov(p)\ geq c n i时,仅当$ p $嵌入列表的成员时。如果$ν$是继任的红衣主教,即$ [ν]^2 $及其双重,则此列表具有两个元素,如果$ν$是$ \ cf(ν)$弱紧凑的限制性cardinal,则四个元素。对于$ν= \ aleph_1 $,第一作者给出了一个列表; F. Dorais将他的建筑扩展到每个无限的继任Cardinal $ν$。

The chain covering number $\Cov(P)$ of a poset $P$ is the least number of chains needed to cover $P$. For a cardinal $ν$, we give a list of posets of cardinality and covering number $ν$ such that for every poset $P$ with no infinite antichain, $\Cov(P)\geq ν$ if and only if $P$ embeds a member of the list. This list has two elements if $ν$ is a successor cardinal, namely $[ν]^2$ and its dual, and four elements if $ν$ is a limit cardinal with $\cf(ν)$ weakly compact. For $ν= \aleph_1$, a list was given by the first author; his construction was extended by F. Dorais to every infinite successor cardinal $ν$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源