论文标题
水泥子:从光学图像中学习水泥熟料中的组成阶段
Cementron: Machine Learning the Constituent Phases in Cement Clinker from Optical Images
论文作者
论文摘要
水泥是最常用的建筑材料。水泥水合物的性能取决于成分阶段,即。在定性和定量上都存在于水泥熟料中的Alite,Belite,铝制和铁氧体。传统上,从依靠域专家和简单图像处理技术的光学图像中分析了熟料阶段。但是,图像的不均匀性,相位的几何形状和大小的变化以及实验方法和成像方法中的变异性使得获得相位挑战。在这里,我们提出了一种机器学习(ML)方法,以自动检测熟料微观结构阶段。在此范围内,我们通过分割Alite和Belite颗粒来创建水泥熟料的第一个注释数据集。此外,我们使用监督的ML方法来训练模型来识别艾特和贝利特地区。具体而言,我们在水泥微观结构上验证图像检测和分割模型检测2,以开发用于检测水泥相的模型,即水泥。我们证明,仅经过文献数据培训的水泥子,在我们从我们的实验中获得的新图像上非常有效,证明了其普遍性。我们使水泥可用于公共使用。
Cement is the most used construction material. The performance of cement hydrate depends on the constituent phases, viz. alite, belite, aluminate, and ferrites present in the cement clinker, both qualitatively and quantitatively. Traditionally, clinker phases are analyzed from optical images relying on a domain expert and simple image processing techniques. However, the non-uniformity of the images, variations in the geometry and size of the phases, and variabilities in the experimental approaches and imaging methods make it challenging to obtain the phases. Here, we present a machine learning (ML) approach to detect clinker microstructure phases automatically. To this extent, we create the first annotated dataset of cement clinker by segmenting alite and belite particles. Further, we use supervised ML methods to train models for identifying alite and belite regions. Specifically, we finetune the image detection and segmentation model Detectron-2 on the cement microstructure to develop a model for detecting the cement phases, namely, Cementron. We demonstrate that Cementron, trained only on literature data, works remarkably well on new images obtained from our experiments, demonstrating its generalizability. We make Cementron available for public use.