论文标题
两Qutrit纠缠:56岁的算法挑战机器学习
Two-Qutrit entanglement: 56-years old algorithm challenges machine learning
论文作者
论文摘要
将状态分类为纠缠或可分离是一项高度挑战性的任务,而它也是量子信息处理理论的基础之一。即使对于相对简单的病例,例如两Qutrit钟形态状态,即九种相互正交的最大纠缠状态的混合物,这项任务也是无聊的。在本文中,我们将吉尔伯特算法应用于先前获得此类的结果。特别是我们使用``纠缠的制图''来争辩说,在[Hiesmayr,B。C. {\ em Scientific Reports} {\ bf 11},19739年(2021)]中留下的大多数状态是纠缠或不可分开的,最可能确实是可分开的,或者是非常弱的。提出的技术可以在更一般的情况下找到无尽的应用程序。
Classifying states as entangled or separable is a highly challenging task, while it is also one of the foundations of quantum information processing theory. This task is higly nontrivial even for relatively simple cases, such as two-qutrit Bell-diagonal states, i.e., mixture of nine mutually orthogonal maximally entangled states. In this article we apply the Gilbert algorithm to revise previously obtained results for this class. In particular we use ``cartography of entanglement'' to argue that most states left in [Hiesmayr, B. C. {\em Scientific Reports} {\bf 11}, 19739 (2021)] as unknown to be entangled or separable are most likely indeed separable, or very weakly entangled. The presented technique can find endless applications in more general cases.