论文标题
无整合流图
Integration-free Learning of Flow Maps
论文作者
论文摘要
我们提出了一种从随着时间变化的向量场数据来学习流量图的神经表示的方法。流量图在流动可视化区域内无处不在,因为它基础是众多可视化技术,例如路径或条纹线索的积分曲线计算,以及流场内计算分离/吸引力结构。然而,流量图计算中的瓶颈,即矢量场的数值集成,可以轻松抑制它们在交互式可视化设置中的使用。作为回应,在我们的工作中,我们寻求有效评估的流动图的神经表示,同时在计算成本和数据要求中保持可扩展以优化。我们方法的一个关键方面是,我们可以在对流图的样本中进行优化的表示过程,而是在流图衍生物上的自洽标准,从而消除了对流图样本的需求,从而完全集成了数值集成。意识到这一点的核心是用于流图的新型神经网络设计,再加上优化方案,其中我们的表示仅需要随时间变化的向量字段来学习,并编码为瞬时速度。我们在2D和3D随时间变化的矢量场上的准确性和效率方面显示了方法的好处,同时显示了我们的流量图神经表示如何使不稳定的流动可视化技术(例如Streaklines)和有限的Lyapunov Exponent受益。
We present a method for learning neural representations of flow maps from time-varying vector field data. The flow map is pervasive within the area of flow visualization, as it is foundational to numerous visualization techniques, e.g. integral curve computation for pathlines or streaklines, as well as computing separation/attraction structures within the flow field. Yet bottlenecks in flow map computation, namely the numerical integration of vector fields, can easily inhibit their use within interactive visualization settings. In response, in our work we seek neural representations of flow maps that are efficient to evaluate, while remaining scalable to optimize, both in computation cost and data requirements. A key aspect of our approach is that we can frame the process of representation learning not in optimizing for samples of the flow map, but rather, a self-consistency criterion on flow map derivatives that eliminates the need for flow map samples, and thus numerical integration, altogether. Central to realizing this is a novel neural network design for flow maps, coupled with an optimization scheme, wherein our representation only requires the time-varying vector field for learning, encoded as instantaneous velocity. We show the benefits of our method over prior works in terms of accuracy and efficiency across a range of 2D and 3D time-varying vector fields, while showing how our neural representation of flow maps can benefit unsteady flow visualization techniques such as streaklines, and the finite-time Lyapunov exponent.