论文标题

轮延:同时使用一个车轮安装的IMU进行本地化和地形映射

Wheel-SLAM: Simultaneous Localization and Terrain Mapping Using One Wheel-mounted IMU

论文作者

Wu, Yibin, Kuang, Jian, Niu, Xiaoji, Behley, Jens, Klingbeil, Lasse, Kuhlmann, Heiner

论文摘要

对于移动机器人来说,需要对环境干扰的可靠姿势估计量强大。为此,惯性测量单元(IMU)起着重要作用,因为他们可以独立地感知车辆的全部运动状态。但是,由于固有的噪声和偏见不稳定,它遭受了累积错误,尤其是对于低成本传感器而言。在我们先前对车轮\ cite {niu2021,wu2021}的研究中,我们提议通过将IMU安装到机器人的轮子上,以利用旋转调制,以限制纯惯性导航系统(INS)的误差漂移。但是,由于缺乏外部校正信号,轮毂仍然在很长一段时间内漂移。在这封信中,我们建议利用轮毂的环境感知能力,仅使用一个IMU实现同时定位和映射(SLAM)。具体来说,我们使用路线库角(由车轮估计的机器人卷角镜像)作为地形特征,以便使用Rao-Blackwellized粒子滤光片使环路闭合。根据粒子维护的网格图中的机器人位置对路库角进行采样和存储。根据当前估计的滚动序列和地形图之间的差异,对颗粒的重量进行更新。现场实验表明,使用机器人滚动角度估计值估算在车轮上执行猛击的想法的可行性。另外,旋转式的定位精度显着提高(超过30 \%)。我们实施的源代码公开可用(https://github.com/i2nav-whu/wheel-slam)。

A reliable pose estimator robust to environmental disturbances is desirable for mobile robots. To this end, inertial measurement units (IMUs) play an important role because they can perceive the full motion state of the vehicle independently. However, it suffers from accumulative error due to inherent noise and bias instability, especially for low-cost sensors. In our previous studies on Wheel-INS \cite{niu2021, wu2021}, we proposed to limit the error drift of the pure inertial navigation system (INS) by mounting an IMU to the wheel of the robot to take advantage of rotation modulation. However, Wheel-INS still drifted over a long period of time due to the lack of external correction signals. In this letter, we propose to exploit the environmental perception ability of Wheel-INS to achieve simultaneous localization and mapping (SLAM) with only one IMU. To be specific, we use the road bank angles (mirrored by the robot roll angles estimated by Wheel-INS) as terrain features to enable the loop closure with a Rao-Blackwellized particle filter. The road bank angle is sampled and stored according to the robot position in the grid maps maintained by the particles. The weights of the particles are updated according to the difference between the currently estimated roll sequence and the terrain map. Field experiments suggest the feasibility of the idea to perform SLAM in Wheel-INS using the robot roll angle estimates. In addition, the positioning accuracy is improved significantly (more than 30\%) over Wheel-INS. The source code of our implementation is publicly available (https://github.com/i2Nav-WHU/Wheel-SLAM).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源