论文标题

有效寻找流感病毒的基因网络

Efficient Cavity Searching for Gene Network of Influenza A Virus

论文作者

Li, Junjie, Zhao, Jietong, Su, Yanqing, Shen, Jiahao, Liu, Yaohua, Fan, Xinyue, Kou, Zheng

论文摘要

流感病毒基因网络的高阶结构(腔体和集团)在进化过程中揭示了病毒之间的紧密关联,并且是表明病毒跨物种感染并引起大流传学的关键信号。作为感知病毒基因动态变化的指标,这些高阶结构一直是病毒学领域的关注焦点。但是,病毒基因网络的大小通常很大,并且在网络中搜索这些结构会引入不可接受的延迟。为了减轻这个问题,在本文中,我们提出了一个基于深度学习的简单尚有效益模型,以搜索流感病毒遗传学的可计算复杂网络中的搜索腔。对公共流感病毒数据集进行的广泛实验证明了Hypersearch对其他高级深度学习方法的有效性,而无需任何详细的模型制作。此外,HyperSearch可以在几分钟内完成搜索工作,而0-1编程则需要几天。由于所提出的方法简单易于转移到其他复杂网络,因此HyperSearch有可能促进监测病毒基因的动态变化,并帮助人类跟上病毒突变的速度。

High order structures (cavities and cliques) of the gene network of influenza A virus reveal tight associations among viruses during evolution and are key signals that indicate viral cross-species infection and cause pandemics. As indicators for sensing the dynamic changes of viral genes, these higher order structures have been the focus of attention in the field of virology. However, the size of the viral gene network is usually huge, and searching these structures in the networks introduces unacceptable delay. To mitigate this issue, in this paper, we propose a simple-yet-effective model named HyperSearch based on deep learning to search cavities in a computable complex network for influenza virus genetics. Extensive experiments conducted on a public influenza virus dataset demonstrate the effectiveness of HyperSearch over other advanced deep-learning methods without any elaborated model crafting. Moreover, HyperSearch can finish the search works in minutes while 0-1 programming takes days. Since the proposed method is simple and easy to be transferred to other complex networks, HyperSearch has the potential to facilitate the monitoring of dynamic changes in viral genes and help humans keep up with the pace of virus mutations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源