论文标题

具有一维Moiré模式的单层铜的电子特性

Electronic properties of monolayer copper selenide with one-dimensional moiré patterns

论文作者

Niu, Gefei, Lu, Jianchen, Geng, Jianqun, Li, Shicheng, Zhang, Hui, Xiong, Wei, Ruan, Zilin, Zhang, Yong, Fu, Boyu, Gao, Lei, Cai, Jinming

论文摘要

应变工程是操纵二维(2D)材料的电子特性的重要方法。作为过渡金属单核化物(TMMS)的典型代表,蜂窝状CUSE单层具有具有一维(1D)Moiré图案的特征,这是由于单轴菌株沿CU(111)底物的三个同等方向之一。在这里,通过结合低温扫描隧道显微镜/光谱(STM/S)实验和密度功能理论(DFT)计算,我们系统地研究了CU(111)底物上应变的CUSE单层的电子特性。我们的结果表明,CUSE单层的半导体特征,带隙为1.28 eV,以及1DMoiré模式对电子性质的1D定期调制。除了单墨西菌紧张的CUSE单层外,我们在Cuse单层中观察到了域边界和线路缺陷,可以分别研究双轴应变和无应变条件。三个不同应变区域的STS测量结果表明,导带中的第一个峰会随着应变的增加而向下移动。 DFT基于三个CUSE原子模型的计算,其内部有不同的应变会重现峰值运动。目前的发现不仅丰富了对应变对电子性质在2D限制的影响的基本理解,而且还为开发2D半导体材料的开发提供了基准。

Strain engineering is a vital way to manipulate the electronic properties of two-dimensional (2D) materials. As a typical representative of transition metal mono-chalcogenides (TMMs), a honeycomb CuSe monolayer features with one-dimensional (1D) moiré patterns owing to the uniaxial strain along one of three equivalent orientations of Cu(111) substrates. Here, by combining low-temperature scanning tunneling microscopy/spectroscopy (STM/S) experiments and density functional theory (DFT) calculations, we systematically investigate the electronic properties of the strained CuSe monolayer on the Cu(111) substrate. Our results show the semiconducting feature of CuSe monolayer with a band gap of 1.28 eV and the 1D periodical modulation of electronic properties by the 1D moiré patterns. Except for the uniaxially strained CuSe monolayer, we observed domain boundary and line defects in the CuSe monolayer, where the biaxial-strain and strain-free conditions can be investigated respectively. STS measurements for the three different strain regions show that the first peak in conduction band will move downward with the increasing strain. DFT calculations based on the three CuSe atomic models with different strain inside reproduced the peak movement. The present findings not only enrich the fundamental comprehension toward the influence of strain on electronic properties at 2D limit, but also offer the benchmark for the development of 2D semiconductor materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源