论文标题
多项式产物的贫乏现象
Paucity phenomena for polynomial products
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $P(x)\in \mathbb{Z}[x]$ be a polynomial with at least two distinct complex roots. We prove that the number of solutions $(x_1, \dots, x_k, y_1, \dots, y_k)\in [N]^{2k}$ to the equation \[ \prod_{1\le i \le k} P(x_i) = \prod_{1\le j \le k} P(y_j)\neq 0 \] (for any $k\ge 1$) is asymptotically $k!N^{k}$ as $N\to +\infty$. This solves a question first proposed and studied by Najnudel. The result can also be interpreted as saying that all even moments of random partial sums $\frac{1}{\sqrt{N}}\sum_{n\le N}f(P(n))$ match standard complex Gaussian moments as $N\to +\infty$, where $f$ is the Steinhaus random multiplicative function.