论文标题

按需-FL:一种动态有效的多标准,联合学习客户部署计划

ON-DEMAND-FL: A Dynamic and Efficient Multi-Criteria Federated Learning Client Deployment Scheme

论文作者

Chahoud, Mario, Sami, Hani, Mourad, Azzam, Otoum, Safa, Otrok, Hadi, Bentahar, Jamal, Guizani, Mohsen

论文摘要

在本文中,我们增加了设备在学习过程中的可用性和集成,以增强联合学习(FL)模型的收敛性。为了解决将所有数据放在一个位置的问题,Federated Learning保持了通过分散数据集学习的能力,结合了隐私和技术。在模型收敛之前,服务器将从每个数据集获得的更新权重组合在许多回合中。大多数文献提出了客户选择技术,以加速收敛和提高准确性。但是,现有的提案都没有集中于根据需要,无论何时何地进行部署和选择客户的灵活性。由于环境极为动态,实际上某些设备无法用作FL中的客户,这会影响学习数据的可用性以及现有解决方案用于客户选择的应用。在本文中,我们通过引入按需FL(一种用于FL的客户部署方法)来解决上述限制,在学习过程中提供了更多的数量和异质性。我们利用诸如Docker之类的容器化技术,使用物联网和移动设备作为志愿者来构建有效的环境。此外,Kubernetes用于编排。由于其进化策略,遗传算法(GA)用于解决多目标优化问题。使用移动数据挑战(MDC)数据集进行的实验和本地框架框架说明了拟议方法的相关性以及随时随地使用较少丢弃的回合和更多可用数据的任何地方,客户在线部署的效率。

In this paper, we increase the availability and integration of devices in the learning process to enhance the convergence of federated learning (FL) models. To address the issue of having all the data in one location, federated learning, which maintains the ability to learn over decentralized data sets, combines privacy and technology. Until the model converges, the server combines the updated weights obtained from each dataset over a number of rounds. The majority of the literature suggested client selection techniques to accelerate convergence and boost accuracy. However, none of the existing proposals have focused on the flexibility to deploy and select clients as needed, wherever and whenever that may be. Due to the extremely dynamic surroundings, some devices are actually not available to serve as clients in FL, which affects the availability of data for learning and the applicability of the existing solution for client selection. In this paper, we address the aforementioned limitations by introducing an On-Demand-FL, a client deployment approach for FL, offering more volume and heterogeneity of data in the learning process. We make use of the containerization technology such as Docker to build efficient environments using IoT and mobile devices serving as volunteers. Furthermore, Kubernetes is used for orchestration. The Genetic algorithm (GA) is used to solve the multi-objective optimization problem due to its evolutionary strategy. The performed experiments using the Mobile Data Challenge (MDC) dataset and the Localfed framework illustrate the relevance of the proposed approach and the efficiency of the on-the-fly deployment of clients whenever and wherever needed with less discarded rounds and more available data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源