论文标题

格拉曼(Grassmann)流量稳定形状生成

Grassmann Manifold Flows for Stable Shape Generation

论文作者

Yataka, Ryoma, Hirashima, Kazuki, Shiraishi, Masashi

论文摘要

最近,对机器学习的研究集中在使用特定歧管中隐含的对称性作为电感偏见的方法上。格拉曼(Grassmann)流形提供了处理代表形状空间的基本形状的能力,从而实现了稳定的形状分析。在本文中,我们提出了一种新颖的方法,在其中我们通过连续的归一化流动建立了在格拉斯曼流动上学习分布的理论基础,其明确的目标是产生稳定的形状。我们的方法通过有效地消除了旨在适应物体基本形状信息的Grassmann歧管中的学习和生成,从而有效地消除了外部转换(例如旋转和反转)的影响,从而促进了更强大的生成。实验结果表明,所提出的方法可以通过捕获数据结构来生成高质量的样本。此外,根据对数可能或证据的下限,该提出的方法显着超过了最先进的方法。预期获得的结果将刺激该领域的进一步研究,从而导致稳定形状产生和分析的进步。

Recently, studies on machine learning have focused on methods that use symmetry implicit in a specific manifold as an inductive bias. Grassmann manifolds provide the ability to handle fundamental shapes represented as shape spaces, enabling stable shape analysis. In this paper, we present a novel approach in which we establish the theoretical foundations for learning distributions on the Grassmann manifold via continuous normalization flows, with the explicit goal of generating stable shapes. Our approach facilitates more robust generation by effectively eliminating the influence of extraneous transformations, such as rotations and inversions, through learning and generating within a Grassmann manifold designed to accommodate the essential shape information of the object. The experimental results indicated that the proposed method could generate high-quality samples by capturing the data structure. Furthermore, the proposed method significantly outperformed state-of-the-art methods in terms of the log-likelihood or evidence lower bound. The results obtained are expected to stimulate further research in this field, leading to advances for stable shape generation and analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源