论文标题

Lamassu:使用神经传感器流式传输语言敏捷的多语言语音识别和翻译

LAMASSU: Streaming Language-Agnostic Multilingual Speech Recognition and Translation Using Neural Transducers

论文作者

Wang, Peidong, Sun, Eric, Xue, Jian, Wu, Yu, Zhou, Long, Gaur, Yashesh, Liu, Shujie, Li, Jinyu

论文摘要

自动语音识别(ASR)和语音翻译(ST)都可以使用神经传感器作为模型结构。因此,可以使用单个换能器模型执行两个任务。在实际应用程序中,这种联合ASR和ST模型可能需要流式传输,并且不需要源语言识别(即语言 - 语言)。在本文中,我们提出了使用神经传感器的流媒体语言敏锐的语音识别和翻译模型Lamassu。基于传感器模型结构,我们提出了四种方法,一个用于多语言输出的统一关节和预测网络,一个集群的多语言编码器,编码器的目标语言识别以及连接派时间分类正规化。实验结果表明,拉马苏不仅大大降低了模型大小,而且还达到了单语ASR和双语ST模型的性能。

Automatic speech recognition (ASR) and speech translation (ST) can both use neural transducers as the model structure. It is thus possible to use a single transducer model to perform both tasks. In real-world applications, such joint ASR and ST models may need to be streaming and do not require source language identification (i.e. language-agnostic). In this paper, we propose LAMASSU, a streaming language-agnostic multilingual speech recognition and translation model using neural transducers. Based on the transducer model structure, we propose four methods, a unified joint and prediction network for multilingual output, a clustered multilingual encoder, target language identification for encoder, and connectionist temporal classification regularization. Experimental results show that LAMASSU not only drastically reduces the model size but also reaches the performances of monolingual ASR and bilingual ST models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源