论文标题
真实代数几何形状中的模量空间和代数周期
Moduli spaces and algebraic cycles in real algebraic geometry
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This thesis intends to make a contribution to the theories of algebraic cycles and moduli spaces over the real numbers. In the study of the subvarieties of a projective algebraic variety, smooth over the field of real numbers, the cycle class map between the Chow ring and the equivariant cohomology ring plays an important role. The image of the cycle class map remains difficult to describe in general; we study this group in detail in the case of real abelian varieties. To do so, we construct integral Fourier transforms on Chow rings of abelian varieties over any field. They allow us to prove the integral Hodge conjecture for one-cycles on complex Jacobian varieties, and the real integral Hodge conjecture modulo torsion for real abelian threefolds. For the theory of real algebraic cycles, and for several other purposes in real algebraic geometry, it is useful to have moduli spaces of real varieties to our disposal. Insight in the topology of a real moduli space provides insight in the geometry of a real variety that defines a point in it, and the other way around. In the moduli space of real abelian varieties, as well as in the Torelli locus contained in it, we prove density of the set of moduli points attached to abelian varieties containing an abelian subvariety of fixed dimension. Moreover, we provide the moduli space of stable real binary quintics with a hyperbolic orbifold structure, compatible with the period map on the locus of smooth quintics. This identifies the moduli space of stable real binary quintics with a non-arithmetic ball quotient.