论文标题
使用判别模型从无创脑电图中对用户意图进行递归估算
Recursive Estimation of User Intent from Noninvasive Electroencephalography using Discriminative Models
论文作者
论文摘要
我们研究了从无创脑电图(EEG)推断用户意图的问题,以恢复患有严重言语和身体障碍(SSPI)的人的沟通。这项工作的重点是改善打字任务中后符号概率的估计。在打字过程的每次迭代中,根据当前概率估计选择了下一个查询的符号子集。有关用户响应的证据是从事件相关电位(ERP)收集的,以更新符号概率,直到一个符号超过预定义的置信阈值。我们提供了描述此任务的图形模型,并基于每个查询的标签向量的歧视概率来得出递归贝叶斯更新规则,我们使用神经网络分类器进行了近似。我们在模拟打字任务中评估了所提出的方法,并表明它表现出基于生成建模的先前方法。
We study the problem of inferring user intent from noninvasive electroencephalography (EEG) to restore communication for people with severe speech and physical impairments (SSPI). The focus of this work is improving the estimation of posterior symbol probabilities in a typing task. At each iteration of the typing procedure, a subset of symbols is chosen for the next query based on the current probability estimate. Evidence about the user's response is collected from event-related potentials (ERP) in order to update symbol probabilities, until one symbol exceeds a predefined confidence threshold. We provide a graphical model describing this task, and derive a recursive Bayesian update rule based on a discriminative probability over label vectors for each query, which we approximate using a neural network classifier. We evaluate the proposed method in a simulated typing task and show that it outperforms previous approaches based on generative modeling.