论文标题
Pangu-Weather:一种3D高分辨率模型,用于快速准确的全球天气预测
Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global Weather Forecast
论文作者
论文摘要
在本文中,我们提出了Pangu-Weather,这是一种基于深度学习的系统,可快速准确地全球天气预报。为此,我们通过从第五代ECMWF重新分析(ERA5)数据下载43美元的每小时全球天气数据来建立一个数据驱动的环境,并培训几个深神经网络,总计约2.56亿美元的参数。预测的空间分辨率为$ 0.25^\ CRICE \ times0.25^\ circ $,可与ECMWF集成的预测系统(IFS)相提并论。更重要的是,第一次,基于AI的方法优于最先进的数值天气预测(NWP)方法,就所有因素(例如,地理位置,特定的湿度,风速,温度等)的准确性(Latitude加权RMSE和ACC)而言,以及从一小时到一周的范围内。有两种关键策略可以提高预测准确性:(i)设计3D地球特异性变压器(3D)架构,将高度(压力水平)信息提出到立方数据中,以及(ii)应用层次时间汇总算法征询累积预测错误。在确定性的预测中,Pangu-Weather在短期到中期的预测中表现出很大的优势(即预测时间从一小时到一个星期不等)。 Pangu-Weather支持广泛的下游预测场景,包括极端天气预测(例如,热带气旋跟踪)和大型成员的集合预测。 Pangu-Weather不仅结束了关于基于AI的方法是否可以超越常规NWP方法的争论,而且还揭示了改善深度学习天气预测系统的新方向。
In this paper, we present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast. For this purpose, we establish a data-driven environment by downloading $43$ years of hourly global weather data from the 5th generation of ECMWF reanalysis (ERA5) data and train a few deep neural networks with about $256$ million parameters in total. The spatial resolution of forecast is $0.25^\circ\times0.25^\circ$, comparable to the ECMWF Integrated Forecast Systems (IFS). More importantly, for the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy (latitude-weighted RMSE and ACC) of all factors (e.g., geopotential, specific humidity, wind speed, temperature, etc.) and in all time ranges (from one hour to one week). There are two key strategies to improve the prediction accuracy: (i) designing a 3D Earth Specific Transformer (3DEST) architecture that formulates the height (pressure level) information into cubic data, and (ii) applying a hierarchical temporal aggregation algorithm to alleviate cumulative forecast errors. In deterministic forecast, Pangu-Weather shows great advantages for short to medium-range forecast (i.e., forecast time ranges from one hour to one week). Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast (e.g., tropical cyclone tracking) and large-member ensemble forecast in real-time. Pangu-Weather not only ends the debate on whether AI-based methods can surpass conventional NWP methods, but also reveals novel directions for improving deep learning weather forecast systems.