论文标题

曲折石墨烯边缘的重建:能量,动力学和残留缺陷

Reconstruction of Zigzag Graphene Edges: Energetics, Kinetics and Residual Defects

论文作者

Polynskaya, Yulia G., Lebedeva, Irina V., Knizhnik, Andrey A., Popov, Andrey M.

论文摘要

从头开始计算以研究锯齿形石墨烯边缘的连续重建。根据沿着反应途径获得的能量曲线,第一个重建步骤是第一个五角大楼对的形成,是最慢的,而已经成核的重建边缘结构域的生长应以更高的速度稳定出现。域仅在接触的情况下仅在1/4的情况下合并为一个,而在其他情况下,剩下残留缺陷。研究了这些缺陷的结构,能量和磁性。发现在完全重建边缘的一对残留缺陷对(即自发域成核)的对自发形成不可能在低于1000 K的温度下。使用动力学模型,我们表明,平均域的长度是在房间温度下的几个$\\hasrmμm的平均长度,在室温下降低了降低的温度,这会降低温度的温度。

Ab initio calculations are performed to study consecutive reconstruction of a zigzag graphene edge. According to the obtained energy profile along the reaction pathway, the first reconstruction step, formation of the first pentagon-heptagon pair, is the slowest one, while the growth of an already nucleated reconstructed edge domain should occur steadily at a much higher rate. Domains merge into one only in 1/4 of cases when they get in contact, while in the rest of the cases, residual defects are left. Structure, energy and magnetic properties of these defects are studied. It is found that spontaneous formation of pairs of residual defects (i.e. spontaneous domain nucleation) in the fully reconstructed edge is unlikely at temperatures below 1000 K. Using a kinetic model, we show that the average domain length is of several $\mathrmμ$m at room temperature and it decreases exponentially upon increasing the temperature at which the reconstruction takes place.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源