论文标题

与设置和凹形延迟在线匹配

Online Matching with Set and Concave Delays

论文作者

Deryckere, Lindsey, Umboh, Seeun William

论文摘要

我们启动以设定延迟的在线问题的研究,其中任何给定时间的延迟成本是一组待处理请求的任意功能。特别是,我们研究了在线最小成本的完美匹配与设定延迟(MPMD-set)问题,这将EMEK等人引入的延迟(MPMD)问题概括了在线最小成本的匹配(MPMD)。 (Stoc 2016)。在MPMD中,$ m $请求随着时间的推移到达$ n $点的时间内。当请求到达时,算法必须选择匹配或延迟请求。目的是创建所有请求的完美匹配,同时最大程度地减少匹配请求之间的距离之和,以及每个请求所产生的总延迟成本。与以前的工作相反,我们在非熟练环境中研究MPMD-SET,该算法不知道未来的延迟成本。我们首先显示没有算法在$ n $或$ m $中具有竞争力。然后,我们研究基于尺寸的延迟的自然特殊情况,其中延迟是无与伦比的请求数量的非压缩功能。我们的主要结果是第一种用于在线最小成本完美匹配与基于尺寸的延迟的非熟练算法,其竞争性$ m $。实际上,这些是MPMD任何变体的第一个非熟练算法。此外,对于任何确定性算法,我们证明了$ω(n)$的下限和任何随机算法的$ω(\ log n)$。这些下限也适用于千里眼算法。最后,我们还提供了$ m $ $ competitve的确定性算法,以用于固定凹陷延迟。

We initiate the study of online problems with set delay, where the delay cost at any given time is an arbitrary function of the set of pending requests. In particular, we study the online min-cost perfect matching with set delay (MPMD-Set) problem, which generalises the online min-cost perfect matching with delay (MPMD) problem introduced by Emek et al. (STOC 2016). In MPMD, $m$ requests arrive over time in a metric space of $n$ points. When a request arrives the algorithm must choose to either match or delay the request. The goal is to create a perfect matching of all requests while minimising the sum of distances between matched requests, and the total delay costs incurred by each of the requests. In contrast to previous work we study MPMD-Set in the non-clairvoyant setting, where the algorithm does not know the future delay costs. We first show no algorithm is competitive in $n$ or $m$. We then study the natural special case of size-based delay where the delay is a non-decreasing function of the number of unmatched requests. Our main result is the first non-clairvoyant algorithms for online min-cost perfect matching with size-based delay that are competitive in terms of $m$. In fact, these are the first non-clairvoyant algorithms for any variant of MPMD. Furthermore, we prove a lower bound of $Ω(n)$ for any deterministic algorithm and $Ω(\log n)$ for any randomised algorithm. These lower bounds also hold for clairvoyant algorithms. Finally, we also give an $m$-competititve deterministic algorithm for uniform concave delays in the clairvoyant setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源