论文标题
部分可观测时空混沌系统的无模型预测
Graphs without a rainbow path of length 3
论文作者
论文摘要
在1959年,Erdős和Gallai证明了不包含固定长度路径的图的最大边数的渐近最佳结合。在这里,我们研究了其定理的彩虹版本,其中人们认为$ k \ geq 1 $图形在一组通用的顶点上,而不是创建来自不同图的路径,并要求每个图中的最大边缘数量。我们证明,在三个边缘和任何$ k \ geq 1 $的路径的情况下,我们证明了渐近最佳的界限。
In 1959 Erdős and Gallai proved the asymptotically optimal bound for the maximum number of edges in graphs not containing a path of a fixed length. Here we study a rainbow version of their theorem, in which one considers $k \geq 1$ graphs on a common set of vertices not creating a path having edges from different graphs and asks for the maximum number of edges in each graph. We prove the asymptotically optimal bound in the case of a path on three edges and any $k \geq 1$.